Directional Variance Adjustment: Bias Reduction in Covariance Matrices Based on Factor Analysis with an Application to Portfolio Optimization
نویسندگان
چکیده
Robust and reliable covariance estimates play a decisive role in financial and many other applications. An important class of estimators is based on factor models. Here, we show by extensive Monte Carlo simulations that covariance matrices derived from the statistical Factor Analysis model exhibit a systematic error, which is similar to the well-known systematic error of the spectrum of the sample covariance matrix. Moreover, we introduce the Directional Variance Adjustment (DVA) algorithm, which diminishes the systematic error. In a thorough empirical study for the US, European, and Hong Kong stock market we show that our proposed method leads to improved portfolio allocation.
منابع مشابه
Directional Variance Adjustment: improving covariance estimates for high-dimensional portfolio optimization
Robust and reliable covariance estimates play a decisive role in financial and many other applications. An important class of estimators is based on Factor models. Here, we show by extensive Monte Carlo simulations that covariance matrices derived from the statistical Factor Analysis model exhibit a systematic error, which is similar to the well-known systematic error of the spectrum of the sam...
متن کاملApplication of Clayton Copula in Portfolio Optimization and its Comparison with Markowitz Mean-Variance Analysis
With the aim of portfolio optimization and management, this article utilizes the Clayton-copula along with copula theory measures. Portfolio-Optimization is one of the activities in investment funds. Thus, it is essential to select an appropriate optimization method. In modern financial analyses, there is growing evidence indicating the distribution of proceeds of financial properties is not cu...
متن کاملRandomly generating portfolio-selection covariance matrices with specified distributional characteristics
In portfolio selection, there is often the need for procedures to generate “realistic” covariance matrices for security returns, for example to test and benchmark optimization algorithms. For application in portfolio optimization, such a procedure should allow the entries in the matrices to have distributional characteristics which we would consider “realistic” for security returns. Deriving mo...
متن کاملPortfolio performance evaluation in modified mean-variance models
The present study is an attempt toward evaluating the performance of portfolios and assets selecting using modified mean-variance models by utilizing a non-parametric efficiency analysis tool, namely Data Envelopment Analysis (DEA). Huge amounts of money are being invested in financial market. As a result, portfolio performance evaluation has created a great deal of interest among people. We kn...
متن کاملUsing MODEA and MODM with Different Risk Measures for Portfolio Optimization
The purpose of this study is to develop portfolio optimization and assets allocation using our proposed models. The study is based on a non-parametric efficiency analysis tool, namely Data Envelopment Analysis (DEA). Conventional DEA models assume non-negative data for inputs and outputs. However, many of these data take the negative value, therefore we propose the MeanSharp-βRisk (MShβR) model...
متن کامل